winter                   Back to the articles list | Back to browse issues page

XML Persian Abstract Print


1- , Faculty of Economics, Allameh Tabataba’i University, Tehran, Iran.
2- , Faculty of Economics, Allameh Tabataba’i University, Tehran, Iran , F.matoori@yahoo.com
Abstract:   (625 Views)
Econometric methodologies can be evaluated based on several criteria, including consistency with economic theory, empirical robustness, forecasting performance, and policy relevance. Traditional theory-driven models often fail to account for non-stationarities in economic data—such as location shifts induced by structural changes—resulting in poor forecasting performance, unreliable policy simulations, and, at times, mathematical inconsistencies. This paper reviews the limitations associated with these evaluation criteria and introduces the Autometrics approach as a comprehensive model selection framework. Autometrics integrates theory-driven and data-driven strategies, often resulting in more candidate variables (N) than observations (T). The approach allows for the inclusion of theoretically relevant variables, dynamic adjustments, nonlinearities, deterministic and stochastic trends, and indicator saturation (IIS, SIS) to account for structural breaks and exogeneity, while preserving the integrity of theory-model parameter estimates. By employing a multi-path model selection algorithm, Autometrics identifies a congruent, parsimonious, and encompassing model through rigorous diagnostic testing of the reduction process.
     
Type of Study: Research | Subject: econometrics
Received: Feb 28 2025 | Accepted: Nov 30 2024

References
1. Blanchard, O. (2000). What Do We Know about Macroeconomics that Fisher and Wicksell Did Not? The Quarterly Journal of Economics, 115(4), 1375-1409. [DOI:10.1162/003355300554999]
2. Boumans, M. A. (1999). Representation and stability in testing and measuring rational expectations. Journal of Economic Methodology, 6, 381-401. [DOI:10.1080/13501789900000024]
3. Campos, J., Ericsson, N. R., & Hendry, D. F. (2005). General-to-specific modeling an overview and selected bibliographyInternational finance discussion papers no 838. Retrieved from [DOI:10.17016/ifdp.2005.838]
4. Castle, J. L., & Hendry, D. F. (2014). Model selection in under-specified equations with breaks. Journal of Econometrics, 178, 286-293. [DOI:10.1016/j.jeconom.2013.08.028]
5. Castle, J. L., & Shephard, N. (Eds.). (2009). The Methodology and Practice of Econometrics. Oxford: Oxford University Press. [DOI:10.1093/acprof:oso/9780199237197.001.0001]
6. Castle, J. L., Shephard, N., Hendry, D. F., & Martinez, A. B. (2017). Evaluating forecasts, narratives and policy using a test of invariance. Econometrics 5. [DOI:10.3390/econometrics5030039]
7. Chauvin, V. J., & Muellbauer, N. J. (2018). Consumption, household portfolios and the housing market in France. Economie et Statistique / Economics and Statistics( 500-501-5), 157-178. [DOI:10.24187/ecostat.2018.500t.1950]
8. Chow, G. C. (1960). Tests of equality between sets of coefficients in two linear regressions. Econometrica 28, 591-605. [DOI:10.2307/1910133]
9. Cusbert, T., & Kendall, E. (2018). Meet MARTIN, the RBA's new macroeconomic model. Australian Reserve Bank Bulletin March, 31-44.
10. Doornik, J. A. (2009). Autometrics. In J. L. Castle, & Shephard, N. (Eds.). (Ed.), The methodology and practice of econometrics (pp. 88-121). Oxford: Oxford University Press. [DOI:10.1093/acprof:oso/9780199237197.003.0004]
11. Doornik, J. A., & Hansen, H. (2008). An omnibus test for univariate and multivariate normality. Oxford Bulletin of Economics and Statistics 70, 927-939. [DOI:10.1111/j.1468-0084.2008.00537.x]
12. Doornik, J. A., & Hendry, D. F. (2018). Empirical Econometric Modelling using PcGive: Volume I. (8th ed.). London: Timberlake Consultants Press.
13. Engle, R. F. (1982). Autoregressive conditional heteroscedasticity, with estimates of the variance of United Kingdom inflation. Econometrica 50, 987-1007. [DOI:10.2307/1912773]
14. Engle, R. F., Hendry, D. F., & Richard, J. F. (1983). Exogeneity. Econometrica, 51, 277-304. doi: [DOI:10.2307/1911990]
15. Frisch, R. (1938). Statistical versus theoretical relations in economic macrodynamics. Mimeograph dated July 17, 1938, League of Nations Memorandum.
16. Geweke, J., Horowitz, J., & Pesaran, M. H. (2006). Econometrics: A Bird's Eye View. CESifo Working Paper Series No. 1870, IZA Discussion Paper No. 2458. [DOI:10.2139/ssrn.5245790]
17. Godfrey, L. G. (1978). Testing for higher order serial correlation in regression equations when the regressors include lagged dependent variables. Econometrica, 46, 1303-1313. [DOI:10.2307/1913830]
18. Haavelmo, T. (1944). The probability approach in econometrics. Econometrica Supplement, 12, 1-118. Retrieved from [DOI:10.2307/1906935]
19. Harvey, A. C., & Phillips, G. D. A. (1981). Testing for heteroscedasticity in simultaneous equation models. Journal of Econometrics, 15(3), 311-340. [DOI:10.1016/0304-4076(81)90098-1]
20. Hendry, D. F. (1980). Econometrics: Alchemy or science? . Economica, 47, 387-406. [DOI:10.2307/2553385]
21. Hendry, D. F. (1995). Dynamic econometrics. Oxford ; New York: Oxford University Press. [DOI:10.1093/0198283164.001.0001]
22. Hendry, D. F. (2009). The methodology of empirical econometric modeling: applied econometrics through the looking glass. In T. C. Mills & K. D. Patterson (Eds.), Palgrave Handbook of Econometrics, Palgrave MacMillan, Basingstoke (pp. 3-67). [DOI:10.1057/9780230244405_1]
23. Hendry, D. F. (2015). Introductory macro-econometrics: A new approach. London: Timberlake consultants.
24. Hendry, D. F. (2017). Imperfect Knowledge, Unpredictability and the Failures of Modern Macroeconomics. Working Papre, Economics Department and Institute for New Economic Thinking at the Oxford Martin School, University of Oxford, UK.
25. Hendry, D. F. (2020). A short history of macro-econometric modelling. Journal of Banking, Finance and Sustainable Development, 1, 1-32. Retrieved from [http://www.collegepress.org.uk/jbfsd/]
26. Hendry, D. F. (2022). Does an empirical economic relation have a life? A review essay. History of Political Economy, 163-179. [DOI:10.1215/00182702-9699096]
27. Hendry, D. F. (2024). A Brief History of General-to-specific Modelling*. Oxford Bulletin of Economics and Statistics, 86(1), 1-20. [DOI:10.1111/obes.12578]
28. Hendry, D. F., & Doornik, J. A. (2014). Empirical model discovery and theory evaluation : automatic selection methods in econometrics. Cambridge, MA: MIT Press. [DOI:10.7551/mitpress/9780262028356.001.0001]
29. Hendry, D. F., & Johansen, S. (2015). Model discovery and Trygve Haavelmo's legacy. Econometric Theory, 31, 93-114. [DOI:10.1017/S0266466614000218]
30. Hendry, D. F., Johansen, S., & Santos, C. (2008). Automatic selection of indicators in a fully saturated regression. Computational Statistics 23, 317-335. [DOI:10.1007/s00180-007-0054-z]
31. Hendry, D. F., & Krolzig, H. M. (2005). The properties of automatic Gets modelling. Economic Journal, 115, 32-61. [DOI:10.1111/j.0013-0133.2005.00979.x]
32. Hendry, D. F., & Mizon, G. E. (2014). Unpredictability in economic analysis, econometric modeling and forecasting. Journal of Econometrics, 182, 186-195. [DOI:10.1016/j.jeconom.2014.04]
33. Hendry, D. F., & Muellbauer, J. N. J. (2018). The future of macroeconomics: macro theory and models at the Bank of England. Oxford Review of Economic Policy, 34, 287-328 Retrieved from [DOI:10.1093/oxrep/grx055]
34. Hoover, K. D., & Perez, S. J. (1999). Data mining reconsidered: encompassing and the general-to-specific approach to specification search. Econometrics Journal, 2, 167-191. [DOI:10.1111/1368-423X.00025]
35. Hoover, K. D., & Perez, S. J. (2000). Three attitudes towards data mining. Journal of Economic Methodology, 7, 195-210. [DOI:10.1080/13501780050045083]
36. Jarque, C. M., & Bera, A. K. (1979). Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics Letters, 6(3), 255-259. [DOI:10.1016/0165-1765(80)90024-5]
37. Johansen, S., & Nielsen, B. (2009). An analysis of the indicator saturation estimator as a robust regression estimator. In J. L. Castle & N. Shephard (Eds.), The Methodology and Practice of Econometrics (pp. 1-36). Oxford: Oxford University Press. [DOI:10.1093/acprof:oso/9780199237197.003.0001] [PMID]
38. Kaplan, G., & Violante, G. (2018). Microeconomic heterogeneity and macroeconomic shocks. Journal of Economic Perspectives, 32, 167-194. [DOI:10.1257/jep.32.3.167]
39. Keynes, J. M. (1936). The General Theory of Employment, Interest and Money. London: Macmillan.
40. Lucas, R. (1976). Econometric policy evaluation: a critique. In K. Brunner & M. A. (Eds.), The Phillips Curve and Labor Markets, Volume 1 of Carnegie-Rochester Conferences on Public Policy (pp. 19-46). Amsterdam: North-Holland. [DOI:10.1016/S0167-2231(76)80003-6]
41. Lucas, R., & Sargent, T. (1979). After Keynesian macroeconomics. Quarterly Review, 3(Spr). [DOI:10.21034/qr.321]
42. Mian, A., & Sufi, A. (2018). Finance and business cycles: The credit-driven household demand channel. Journal of Economic Perspectives, 32, 31-58. [DOI:10.1257/jep.32.3.31]
43. Mizon, G. E., & Richard, J. F. (1986). The encompassing principle and its application to non-nested hypothesis tests. Econometrica, 54, 657-678. [DOI:10.2307/1911313]
44. Pagan, A. R. (1987). Three econometric methodologies: a critical appraisal. Journal of Economic Surveys, 1, 3-24. [DOI:10.1111/j.1467-6419.1987.tb00022.x]
45. Pagan, A. R. (2003). Report on modelling and forecasting at the Bank of England. Bank of England Quarterly Bulletin(Spring). Retrieved from [http://www.bankofengland.co.uk/archive/Documents/historicpubs/qb/2003/qb030106.pdf]
46. Persons, W. M. (1919). Indices of business conditions. Review of Economic Statistics, 1, 5-107.
47. Persons, W. M. (1924). The Problem of Business Forecasting. London: Pitman.
48. Pesaran, M. H. (1974). On the general problem of model selection. Review of Economic Studies, 41, 153-171. [DOI:10.2307/2296710]
49. Sargan, J. D. (1957). The danger of over-simplification. Oxford Bulletin of Economics and Statistics, 19(171-178). Retrieved from [DOI:10.1111/j.1468-0084.1957.mp19002009.x]
50. Sims, C. A. (1980). Macroeconomics and reality. Econometrica, 48, 1-48. [DOI:10.2307/1912017]
51. Taleb, N. N. (2007). The black swan. New York: Random House.
52. Uhlig, H. (2005). What are the effects of monetary policy on output? Results from an agnostic identification procedure. Journal of Monetary Economics, 52(2), 381-419. [DOI:10.1016/j.jmoneco.2004.05.007]
53. White, H. (1980). A heteroskedastic-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48, 817-838. [DOI:10.2307/1912934]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.